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1. INTRODUCTION 

Various applications require the integration of functions on spherical surfaces in 
Euclidean 4-space. The concept of spherical t-designs confers an advantage for the 
solution of that class of numerical problems. By definition, all points of a t-design 
are equally weighted. Furthermore, suitably chosen spherical designs possess an 
automorphism group acting transitively on the points. The most interesting group 
in this context is Id, the hypericosahedral group of order 14,400. It allows the con- 
struction of a unique 19-design containing 3600 integration points furnishing the 
exact integration of hyperspherical harmonics up to 19th order, while 20th order 
harmonics are integrated with minimized errors. 

2. THE 600-CELL AND ITS AUTOMORPHISM GROUP 

Cubature formulas invariant under finite rotation groups have been considered 
by Sobolev [9], while the special case of the hypericosahedral group was discussed 
by Salihov [8]. In connection with the theory of spherical designs invented by 
Delsarte et al. [4], powerful integration formulas can be found. Examples are the 9- 
designs in lR3 and 19-designs in R4 given by Goethals et al. [S]. The unique optimal 
9-orbit for any 3-dimensional orthogonal group was constructed by Neutsch [7]. 

The largest finite orthogonal group in 4-dimensional Euclidean space is the 
hypericosahedral group Z4, which can be defined as the automorphism group of the 
regular 600-cell (cf. Coxeter [a]). To this end we consider the root system of 
Coxeter type H4: 

0 m m l 

It has 120 members. In a suitable coordinate frame (x, y, z, t) these are 

(1) 

(0, 60, 11, ac1, 1, 1, 11, tc LA L’, 0) (2) 
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and all even coordinate permutations and sign reversals, where 

A=+(-l+JX) 

and 

&=4(-l-&. 

They are the 120 vertices of a regular 600-cell. 

(3) 

(4) 

3. INVARIANT POLYNOMIALS UNDER THE HYPERICOSAHEDRAL GROUP 

The degrees of the Id-invariant polynomials can be calculated with the help of the 
Molien series 

which reduces to 

(5) 

M(&, &)= [(l -E’)(l -&12)(l -E2’)(l -E3’)]-’ (6) 

(Coxeter and Moser [3]). Hence there is a set of four basic invariant polynomials 
P,, P12, P,,, P,, of degrees 2, 12, 20, and 30. The natural choice for P2 is 

P2=X~+y~+z~+t*=~(2,0,0,0). (7) 

Here the symbol (a, b, c, d) denotes 

(a, b, c, d) = xUybzCtd + all even permutations of the exponents. (8) 

The invariant P,, is unique up to a constant factor and the addition of multiples of 
P:. For convenience we choose P,, such that the coefficient of ( 12,0,0,0) 
vanishes: 

P,,=2(10,2,0,0)-6(8,4,0,0)-12(8,2,2,0) 

+7 (6,6,0,0)+(9-33&)(6,4,2,0)+(9+33$)<6,4,0,2) (9) 

+10(4,4,4,0)+116(6,2,2,2)-135(4,4,2,2) 

and 

p,, = fwp:,), 

p30 = 4P12P2oh 

(10) 

(11) 
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where A is the Laplacian in Euclidean 4-space 

A=~~+c?;+c?;+~:. 

As usual, the average of a function P over the hypersphere 

SZ,={(x,y,z,t)E(W~~X*+y*+Z*+t*=l} 

is defined by 

Pds2,. 

(12) 

(13) 

(14) 

Hence 

M4((a, b, c, d))= 12.2-2(“+b+c+d). 
(2a)! (2b)! (2c)! (2d)! 

a! b! c! d!(a + b + c + d+ l)! (1% 

and thus 

M4(p2) = l, (16) 

M4(p,,) = l/l49 

M4( P,,) = 1267217, 

(17) 

(18) 

M4(P,,) = 13542912/91. (19) 

These results were obtained through the use of the REDUCE 3 algebraic 
manipulation system (Hearn [6] ). 

We recall the following definitions: A finite set N of unit vectors in Euclidean 4- 
space is called a spherical t-design if for all polynomials P of degree <t the N- 
average of P equals M,(P) (Delsarte, Goethals, and Seidel [4]). Furthermore, if N 
is transitively permuted by a finite orthogonal group G, we say that N is a t-orbit of 
G (Neutsch [7]). 

We are now able to formulate the following 

THEOREM. Every orbit of the hypericosahedral group Z4 which is contained in the 
surface of the unit hypersphere is an 1 l-design. There are infinitely many 19-orbits of 
Z,, but no 2CLorbits. Exactly one of these 19-orbits is optimal with respect to 
integration of polynomials of degree 20. 

The 3600 integration points are of the form Cr E, + C2 E2, where E, and E, are 
vertices of the 600-cell which are mutually orthogonal, while the coefficients Cr and 
C, are approximately: 

C,=O.97129 92948 30434 51205 35832, 

C, = 0.23786 06311 72753 45523 39919. 
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Proof: In analogy to the 3-dimensional case (Neutsch [7]), the first two asser- 
tions are obvious because P,, and Pzo are the smallest degree nonconstant Z,- 
invariant polynomials. The point (x, y, z, t) generates a 19-orbit of the group if 

P,(& Y, z, t) = M,(P,) = 1 (20) 

P,,(x, y, z, t) = M,(P,,) = i$. (21) 

The point (x, y, z, t) compatible with (20, 21) yields an extremum of P,, if for all 
vectors v tangent to the intersection of (20) and (21) 

VVP,, = 0 (22) 

holds, where V denotes the gradient. This means that VP,, VP,,, VP,, are linearly 
dependent. Hence VP,, VP,,, VP,,, VP,, are also linearly dependent: 

det(VP,, VP,,, VP,,, VP,,) = 0. (23) 

The reflection t + --t is an element of Z,; thus all invariants of Z, are even functions 
of t. If we set t = 0, the fourth line of the determinant (23) vanishes. The hyperplane 
t = 0 is therefore a solution of (23), and similarly, all its images under Z,. The union 
of these 60 hyperplanes forms the complete solution of (23) as the determinant is a 
homogeneous polynomial of degree 60. Without loss of generality, we may set t = 0 
and use 

p*(x, Y? z) = ax> y, z, 0). (24) 

Equations (20)(22) reduce to 

mx,Y,z)= 1, (25) 

P&(x, y, z) = $& (26) 

det(VP:, VP&, VP,,) = 0. (27) 

The subgroup of Z4 fixing (0, 0, 0,l) is isomorphic to the icosahedral group I,. We 
use as the basic invariants of I,: 

Q2= x2+y2+z2, (28) 

Q6 = 4x2y2z2 + I(x4y2 + y4z2 + z”x’) + A’(x2y4 + y2z4 + z2x4), (29) 
Qm=$(x4+y4+ z4 - 2x2y2 - 2yY - 2z2x2( (12’6 - A”) x*y*z* 

+ 12(x2y4 + y*z4 + z’x”) - P(x4y2 + y4z* + 24x2)), (30) 
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as defined in Neutsch [7, Eqs. (13)-( 15)]. Pz, P:,, and Pf& are invariant under Z3 
and can be expressed in terms of Q2, Qs, Q,, : 

P: = Q2, (31) 

P:, = - tQ:Q, - 6Qi - 4QzQl0, (32) 
P~~=480Q:'-26880Q:Q,-90096Q~Q~-92928Q2Q~-8960Q:Q,, 

+ 11616Q:Q6Q,,+ 1936Q:,. (33) 

Hence (27) can be rewritten as 

det(VQ,, VQ6, VQlo) det 
WY, p:2, coo) 
J(Qz, Qcs, QIO) 

= -464@Q6Qlo det(VQ,, VQ6, VQlo) = 0. (34) 

There are three cases to be distinguished: 

case 1: dWQ2, VQ6, VQlo) = 0, (35) 
case 2: QIo(x, y, z) = 0, (36) 
case 3: Qs(x, y, z) = 0. (37) 

The icosahedral group Z3 transitively permutes the 12 vertices, 20 faces, and 30 
edges of a regular icosahedron inscribed into the unit sphere. 

Case 1. We use the same procedure as with Z4 above (Eq. (23)), and find the 
complete solution to be the union of the 15 planes normal to the icosahedron’s 15 
pairs of edge-centres. For reasons of transitivity we may restrict ourselves to one of 
these planes, e.g., z = 0. Condition (25) reduces to 

We substitute 

P:(x,y,0)=Q,(x,y,0)=x2+y2= 1. (38) 

2x2=1+p5- '12; 2Y2 = 1 -p5 - 112 

and obtain 

Q&Y~O)= -~!-,(~--)(~~-5), 

Q1o(w~O)=&i(3~+5)~~(~~-5). 

Using (32) we derive 

21~4’ - 119,~~’ + 175~~ - 125 = 0. 

(39) 

(40) 

(41) 

(42) 
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The only real solution for ,u2 is 

+; 17+~[J1177+135JG+~1177-135&l 
( 3 > 

(43) 

or 

and 

p = ~1.9830449011 (44) 

x = f0.9712992948; y = kO.2378606312 (45) 

for positive /.L The values of x and y are interchanged for the negative solution. 
Hence 

eoo(x~ Y? 0) = j& (2123/~‘- 3875~~ + 1,598,375), (46) 
3 

I’;,,( x, y, 0) = 1805.889296 < M4( P20). 

Case 2. Case 2 has no real solutions. 

Case 3. Using 

Q&c Y, 2) = 0 

and (26) and (32) we find 

Qdx, Y, z) = -4. 

(47) 

(48) 

(49) 

Thus 

adX? YY z) = 
88,176 
- = 1799.5 10204 < M4( PzO) 49 (50) 

by virtue of (33). Both cases (1 and 3) yield values of P,, smaller than M4(P2,); 

hence there is no 20-orbit of Z4. The optimal IPorbit is given by case 1. The length 
of that orbit is 3600. Points are generated by application of Z4 to any one of them, 
e.g., 

(51) 

with 

6’=$ 
[ 

17+~(~1177+135Jz+~1177-135Jz) . 
3 1 (52) 
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Numerical values with an accuracy of 25 digits are 

x = 0.9712992948304345120535832, 

y = 0.2378606311727534552339919. 
(53) 

(54) 

This completes the proof of the theorem. 

4. CONCLUSIONS 

We have demonstrated the existence of a unique optimal 19-orbit of the group Z4 
containing 3600 points. These equally weighted points are generated by simple 
operations like reflections in the roots of the Coxeter system H4. They are all the 
vectors of the form C, E, + C,E,, where (E,, E2) represent the 120 x 30 ordered 
pairs of vertices of the 600-cell (given by Eq. (2)) which are orthogonal to each 
other. Obviously, simply generated and equally weighted points confer an advan- 
tage in integration procedures. 

APPENDIX 

We list the vertices and centres of the edges, faces, and cells of the 600-cell. For 
each vector given there are additional ones (not listed here) that are formed by even 
permutations of the coordinates and/or sign reversals. Their number is given in 
each case. The definition of the following quantities is helpful: 

A=(-1+5”*)/2, (‘41) 
A’=(-l-5”*)/2, 642) 

s= ((5 + 51’2)/2)1’2, (A3) 
s’ = ((5 - 5”*)/2)l’*. (A4) 

The 120 vertices are 

(0, 0, 0, 1) 

+(I> 1, 1, 1) 

f(l, A A’, 0) 

The 720 edge centres are 

# =8, 

# =16, 

# =96. 

(A5) 

(W 

(47) 
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5 - l/2(0, 0, s, s') # =48, 

20 - “2(s + s’, s + s’, s - s’, s - s’) # = 96, 

20 ~ qo, s, s + s’, 2s - s’) 

20 - l/2(0, s’, s + 2s’, s - s’) 

20 - qs, 2s, s’, s - s’) 

20 - “2(s, 2s’, s’, s + s’) 

The 1200 face centres are 

The 600 cell centres are 

2-“2(0,0, 1, 1) 

8-“2(1, 1, 1, A-A’) 

8 - “2( 1, A, A, Af2) 

8 - 1’2(12’, A’, A’, ,I*) 

8 -l/*(0, 1, A*, ,I’*) 

8 - 1’2(O, A’, 1, A- A’) 

8-“‘(1, 2, A, A’) 
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